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Stopping power of hot QCD plasma
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The partonic energy loss has been calculated taking all the 2 → 2 processes into account.
Relative importance of individual channel is clearly revealed. We also discuss subtleties related to
the identical final state partons. The estimated collisional loss is significantly large. In addition, we
present closed form formulas for both the collision probabilities and stopping power (dE/dx).
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The partonic energy loss in a QCD plasma has received
significant attention in recent years. Experimentally, the
partonic energy loss can be probed by measuring the
high pT hadrons emanating from ultra-relativistic heavy
ion collisions. This idea was first proposed by Bjorken
[1] where ‘ionization loss’ of the quark and gluons in a
QCD plasma was estimated. In fact, the ‘stopping power’
(dE/dx) of the plasma is proportional to

√
ǫ, where, ǫ is

the energy density of the partonic medium. Therefore,
by measuring various high pT observables one can probe
the initial parton density [1].

Hard partons, injected into hot QCD medium, can dis-
sipate energy in two ways, viz., by two body collisions
or via the bremsstrahlung emission of gluons, commonly
referred to as collisional and radiative loss respectively.
For electromagnetic processes, it is well known that at
large energies, radiation losses are much higher than the
collisional loss. At low energy, however, the latter is
more dominant. In fact, there is a critical energy Ec,
at which, both the processes contribute equally [2–4]. In
QCD plasma, to our knowledge, such estimation of Ec is
not known yet. Present work is an attempt towards this
direction. Obviously this requires complete treatment of
both 2 → 2 and 2 → 3 (or higher order) processes. While
significant progress has been made over the past decade
to estimate bremsstrahlung induced partonic energy loss
[5–13], collisional loss, as we uncover, begs further atten-
tion. In the original proposal, Bjorken actually consid-
ered only 2 → 2 loss [1], however, this and subsequent pa-
pers observe a marginal value, (dE/dx)coll ≪ 1 GeV/fm
[1,5,14–16]. This is much less than what we report in this
letter. It might be mentioned that calculations reported
in [1,14] were restricted only to the t channel processes,
thereby, excluding the interference and exchange terms,
which contribute significantly. They are particularly im-
portant for processes having u channel divergences.

In the present work we take all possible diagrams in-
cluding elastic and inelastic scatterings. Consequently,
estimated (dE/dx)coll, is higher than reported before. In
fact, the two body compton like scattering, proves to
be quite efficient in transferring energy into the plasma.
Furthermore, unlike heavy flavor energy loss [16] in a
plasma (with light constituents), light quark involves

subtleties related to the processes having identical final
state species. This has not been considered earlier. In
addition, we also evaluate explicitly the collisional loss of
gluon energy. For this, gg → gg and qg → qg are found
to be most important.

To calculate the stopping power of QCD plasma aris-
ing out of two body scatterings, we introduce a formal-
ism along the line similar to what is employed to study
cosmic ray showers [2,3]. Therefore, we define a differen-
tial collision probability, Θ(E, E′)dE′dx which represents
the probability of a parton with energy E to transfer an
amount of energy between E′ and E′ + dE′ to a plasma
constituent in traversing a thickness dx. Energy loss can
be obtained by convoluting Θ(E, E′)dE′ with the energy
transfer (E′) for each processes which generically is given
by,

dE

dx
=

∫ Emax

Emin

E′Θ(E, E′)dE′. (1)

In the above equation, Emax is the maximum en-
ergy transfer, while Emin is a cut off used to regu-
late infrared divergence related to the usual small an-
gle limit. However, in case of energy loss calculation
∫

dθ
θ3 divergence that appears in the cross section be-

comes softer as schematically dE/dx ∼ nσE′, where,
E′/E = 1

2 (1 − cos θ) ∼ θ2/4, tames the divergence. This
cut-off procedure can be avoided by incorporating ap-
propriate screening effects [15,16]. A complete treatment
of this singularity in the context of heavy quark energy
loss both for soft and hard momentum transfer within
hard thermal loop resummation scheme has been dis-
cussed in [16]. However, as the motivation of the present
work is to unravel the relative contribution of each pro-
cesses, to deal with the small angle divergence, we take
the approach of Ref. [1]. It might be mentioned that
for coulomb like scattering, Θ(E, E′) ∝ 1/E′2 and there-

fore dE/dx ∝
∫

dE′

E′
. This, evidently, is divergent and

gives the logarithmic dependence of dE/dx [1]. In the
subsequent sections, we present explicit expressions of
Θ(E, E′)dE′ for various processes. Corresponding QED
results are also derived for comparison [2,3]. The quan-
tities E and E′ are defined in the laboratory frame. It
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should be remarked that, for dE/dx, the large angle scat-
terings are important as it involves large energy transfer
[17]. The small angle scatterings, nevertheless, are also
important because of their enhanced rates caused by the
infrared singularities. Hence we retain contributions from
all angles.

Let us first consider propagation of a hard quark
through a QCD plasma. The collisions which would
contribute to its energy loss are qq → qq, qq′ → qq′,
qq̄′ → qq̄′, qg → qg and qq̄ → qq̄, gg, q′q̄′. In the above
processes primes indicate different flavors. It might be
mentioned that in a baryon free region, i.e., in absence of
a net baryonic chemical potential, quark and anti-quark
energy loss will be the same. Therefore, we do not treat
them separately. Likewise, gluonic energy loss can also
be calculated. This is expected to be much larger than
collisional loss of quarks because of larger gg cross sec-
tion.

The most dominant process for quark energy loss, as
mentioned before, is compton like scattering, i.e. qg →
qg. Beside the t channel, contributions from additional
diagrams are found to be non-negligible.

The differential collision probability for the compton
like scattering is as follows:

Θqg→qg(E, E′)dE′ =
πα2

s

2ωE2
ρg

[

1 − 2
E

E′
+ 2(

E

E′
)2

+
4

9
{1 − E′

E
+

E

E − E′
}
]

dE′ (2)

In the last equation and subsequent expressions, ρq(g)

denotes quark (gluon) density which for a equilibrated

plasma can be written as : ρq,g = γq,g

∫

d3k
(2π)3 fq,g(k).

Here, γq,g is the appropriate degeneracy factor, f(k) =
1

ek/T ±1
, plus or minus sign would correspond to the quark

and gluon state, while, ω denotes parton energy in the
static limit which can be evaluated using the techniques
of finite temperature quantum fields [18].

In Eq. 2, the first three terms come from the t channel
and others originate from the exchange diagram and s
channel. Evidently, E/(E −E′) gives rise to logarithmic
enhancement. Thus overall contribution becomes signif-
icant if one retains all the possible diagrams. To get the
energy loss, one integrates the differential collision prob-
ability weighted with the energy transfer as shown in Eq.
1 to yield :

(
dE

dx
)qg→qg =

πα2
s

2ω
ρg

[22

9

(

ln(
2E

ω
) +

ω

2E

)

− 13

18
(

ω

2E
)2

+
4

27
(

ω

2E
)3 − 101

54

]

(3)

In writing the above equation, we have used Emin = ω/2,
and Emax = E, the energy of the hard parton. It should
be noted that the coefficient of the logarithmic term is
different from that one obtains by restricting to the t
channel alone.

Next we consider Möller type qq → qq scattering for
which the differential collision probability [17] reads,

Θqq→qq(E, E′)dE′ =
4

9

πα2
s

ω
ρq

[ E2

E′2(E − E′)2

+
∆

E′(E − E′)
+

1

E2

]

dE′, (4)

where, ∆ = −10/3. In the last expression if we replace
2
9α2

s by α2
em and ∆ by -2, the electron energy loss due

to Möller scattering ensues [2,3]. This reaction deserves
special attention as it involves two identical particles in
the final state. Therefore, Θ(E, E′)dE′, in this case,
should be interpreted as the probability of a collision
which leaves one parton in the energy state E′ and the
other in the energy state E − E′. To take into account
all the possibilities, E′ is varied from ω/2 to E/2 [2,3].
Similar subtlety is involved for processes like gg → gg or
qq̄ → gg etc. The final expression for qq → qq is given by

(

dE

dx

)

qq→qq

=
4

9

πα2
s

ω
ρq

[

ln(2E/ω) + ∆ ln 2 − 2E

2E − ω

− 1

2
(

ω

2E
)2 +

17

8

]

. (5)

In writing the second term we have used the fact that
E ≫ ω. This is justified, as for the present problem, par-
tonic jets have very high energy compared to the energy
of the plasma constituents which could be ∼ 3T. There-
fore, this expression and consequently others presented
in this paper can be simplified further [17]. Another im-
portant difference of Eq.3 and Eq.5 is the appearance
of a new term 2E/(2E − ω). This originates from the
exchange diagram (u−2 term).

The other important reaction is qq̄ → qq̄, which also
has t−2 divergence [19] and therefore, found to contribute
significantly to the total energy loss. It should be noted
that there is no u−2 divergence involved in this process
hence the collision is dominated by soft scattering and re-
sult do not differ much if the relevant s channel diagram
is excluded. We, nevertheless, retain all the diagrams.
The differential probability for ‘bhabha’ like scattering,
therefore, takes the form :

Θqq̄→qq̄(E, E′)dE′ =
4

9

πα2
s

ωE′2
ρq

[

1 − ∆′
E′

E
+ (2∆′ − 1)

E′2

E2

−∆′ E′3

E3
+

E′4

E4

]

dE′ (6)

Corresponding energy loss turns out to be :

(
dE

dx
)qq̄→qq̄ =

4

9

πα2
s

ω
ρq

[

− 1

4
− ∆′

3
+ ln

2E

ω
+ ∆′

ω

2E
−

2∆′ − 1

2
(

ω

2E
)2 +

∆′

3
(

ω

2E
)3 − 1

4
(

ω

2E
)4

]

, (7)
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where ∆′ = 2/3. The QED limit for the last two
equations can be taken by replacing 2

9α2
s with α2

em and
∆′ = 2 [2,3].

Finally we present results for the process involving fu-
sion of quark-antiquark pair to produce double gluons
in the final state. This again involved identical particles
in the final channel for which appropriate limit is taken.
This process is also suppressed because of less sensitive
infrared divergences.

Θqq̄→gg(E, E′)dE′ =
4

3

πα2
s

ωE2
ρq

[4

9
{ E

E′
+

E′

E − E′
} + 2

E′

E

− 2
E′2

E2
− 13

9

]

dE′ (8)

Other important reactions for which we do not present
explicit results include qq′ → qq′ and qq̄′ → qq̄′. They
contribute equally to the energy loss (for matter with
ρq = ρq̄). It should be mentioned that qq̄ → q′q̄′ induced
energy loss is small because of the absence of infrared en-
hancement. This again is less divergent (no t−2 or u−2),
and, therefore, found to be less effective means of en-
ergy dissipation. This also shows up in the expression
for dE/dx which does not have any logarithmic energy
dependence as evident from :

(
dE

dx
)qq̄→gg =

4

3

πα2
s

ω
ρq

[

− 53

288
+

17

18
(

ω

2E
)2

− 2

3
(

ω

2E
)3 +

1

2
(

ω

2E
)4 +

4

9
ln 2

]

(9)

Similar to quarks, hard gluons can also dissipate en-
ergy while colliding with the plasma constituents. Most
important process by which gluons can transfer energy
to the plasma is the gg → gg.

Θgg→gg(E, E′)dE′ =
9

4

πα2
s

ωE2
ρg

[

3 − E′(E − E′)

E2
+

E2

E′2

− E

E′
+

EE′

(E − E′)2
]

dE′ (10)
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FIG. 1. Individual contributions of various processes re-
sponsible for quark energy loss are shown. The aggregated
collisional loss is also presented

Corresponding expression for the energy loss can be
written as

(
dE

dx
)gg→gg =

9

4

πα2
s

ω
ρg

[451

192
− 3 ln 2 + ln(

2E

ω
) − 3

2
(

ω

2E
)2

+
1

3
(

ω

2E
)3 − 1

4
(

ω

2E
)4 − 2E

2E − ω

]

(11)

Like quark, the QCD compton scattering also proves to
be quite efficient in transferring gluon energy into the
plasma. Relevant expressions for the differential colli-
sional probability Θ(E, E′)dE′ and dE/dx induced by
gq → gq scattering can be obtained from Eqs. 2 and 3
respectively with ρg replaced by ρq. It should be men-
tioned that gg → qq̄ is also suppressed as there is no t−2

or u−2 singularity involved in this process.

In Fig. 1 we present stopping power as function of en-
ergy of the incoming parton at a temperature T = 250
MeV. The result is to be compared with previous esti-
mates [1,14]. Evidently, bulk contribution to the total
collisional energy loss of quark comes from the qg → qg
channel. Net energy loss of a light quark is given by the
sum of all these diagrams including scattering and anni-
hilation processes. Contribution of inelastic channels are
found to be small and, therefore, have not been shown
explicitly. However, the total loss, as demonstrated in
Fig. 1. include effect of all the channels. It should
be mentioned that present treatment can be extended
for heavy quarks for which collision probabilities will
be modified [17]. Quantitatively, we find dE/dx ∼ 0.8
GeV/fm for a 20 GeV parton, vis-a-vis 0.2 GeV/fm of
Refs. [1,14,16]. This can be attributed to the diagrams
other than t channel.

The results for gluon energy loss is presented in Fig.2
below. Evidently gluon energy loss is mostly driven by
gg → gg scattering. Also comparable is the contribution
of qg → qg channel.

0 10 20 30 40 50 60 70 80 90 100
E (GeV)

0

0.5

1

1.5

2

2.5

3

(d
E

/d
x)

 (
G

eV
/fm

)

gq (q)−>gq (q) 
gg−>gg
Total

T = 250 MeV   αs=0.3
−−

FIG. 2. Individual contributions of various processes re-
sponsible for gluon energy loss are shown. Dashed, dot-dashed
and solid line represent gq(q̄) → gq(q̄), gg → gg and total re-
spectively.
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To bring the importance of collisional loss into bold
relief, we estimate the possible parton density relevant
for the RHIC energies. The gluon rapidity density in
this case can be taken as dNg/dy ∼ 1000, which, when

plugged into the Bjorken formula [20] ρg =
dNg

dy
/τ0πR2

Au

with formation time τ0 = 0.5 fm/c, we get a value of
T ∼ 400 MeV. Corresponding values of the energy loss
for quark and gluon is significantly large as depicted in
Fig 3. It might be mentioned that this density is consis-
tent with the one used in Ref. [6].
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gluon
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FIG. 3. Individual contributions for quark (solid line) and
gluon (dashed line) energy loss.

To summarize, in the present work, we have stud-
ied collisional loss of quarks and gluons in a hot par-
tonic medium. Contrary to the previous estimates of
refs. [1,14], even at moderate temperature T ∼ 250 MeV
one can achieve considerable energy loss in 2 → 2 pro-
cesses. It is found that qg → qg is the most dominant
mechanism of quark energy dissipation. Even for gluons,
this proves to be almost equally effective as gg scatter-
ing. We also have presented explicit form of dE/dx for
both quarks and gluons. Significant contribution is com-
ing both from u channel and interference terms. There-
fore, we conclude that collisional loss is not insignificantly
small, hence should be compared to the radiative loss.
Furthermore, RHIC data suggests only a tiny amount
of ‘jet quenching’ which, we believe, can be accommo-
dated with the collisional loss if all these channels are

taken into account. Such investigations are currently in
progress and shall be reported in a subsequent publica-
tion [17].
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